On complex manifolds with certain structures which are related to complex contact structures
نویسندگان
چکیده
منابع مشابه
Orthogonal complex structures on certain Riemannian 6-manifolds∗
It is shown that the Hermitian-symmetric space CP1 × CP1 × CP1 and the flag manifold F1,2 endowed with any left invariant metric admit no compatible integrable almost complex structures (even locally) different from the invariant ones. As an application it is proved that any stable harmonic immersion from F1,2 equipped with an invariant metric into an irreducible Hermitian symmetric space of co...
متن کاملContact Structures on 5–manifolds
Using recent work on high dimensional Lutz twists and families of Weinstein structures we show that any almost contact structure on a 5–manifold is homotopic to a contact structure.
متن کاملPoisson Structures on Complex Flag Manifolds Associated with Real Forms
For a complex semisimple Lie group G and a real form G0 we define a Poisson structure on the variety of Borel subgroups of G with the property that all G0-orbits in X as well as all Bruhat cells (for a suitable choice of a Borel subgroup of G) are Poisson submanifolds. In particular, we show that every non-empty intersection of a G0-orbit and a Bruhat cell is a regular Poisson manifold, and we ...
متن کاملComplex structures on 4-manifolds with symplectic 2-torus actions
We apply the general theory for symplectic torus actions with symplectic or coisotropic orbits to prove that a 4-manifold with a symplectic 2-torus action admits an invariant complex structure and give an identification of those that do not admit a Kähler structure with Kodaira’s class of complex surfaces which admit a nowhere vanishing holomorphic (2, 0)-form, but are not a torus or a K3 surface.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Tohoku Mathematical Journal
سال: 1963
ISSN: 0040-8735
DOI: 10.2748/tmj/1178243803